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The Aharonov—Anandan phase for quasi-energy
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4 Academichesky Avenue, 634055 Tomsk, Russia
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Abstract. Quasi-energy spectral seties [gy (), ¥g,] which, in the limit & — 0, correspond to
stable motions of a classical system along closed phase trajectorigs are built up in terms of
a quasi-classical approximation for the Schrodinger equation with an arbitrary T-periodic £~!-
(pseudo)differential Hamilton operator. Using the procedure of splitting the quantum-mechanical
phase into dynamic and geometric components, the ‘geometric’ contribution of the Aharonov—
Anandan phase y,, to the quasi-energy spectrum is calculated. It is shown that the y;, phase,
in the adiabatic approximation, coincides with the Berry phase that corresponds to a cyclic
eveolution of a stable rest-point of a classical system. Some examples are considered.

1. Statement of the problem

Let us consider a quantuﬁl-mechanical system whose Hamiltonian is described by
an arbitrary Weyl-ordered %~'-(pseudo)differential scalar operator (%~!-PDO) f-uI B =
H (——iﬁ%, g,t, k), g € R}, and, moreover, is a T-periodic function of time: IC} (t4T)=
;} (#). The wavefunction of such alsystem satisfies the Schridinger equation

(-—ihﬁ, + Io}(t)) W{g.t,B}=0. (1.1)
Zel’dovich [1] and Ritas [2] were the first to distinguish an important class of solutions to
equation (1.1), the guasi-energy states . (g, ¢, &), which can be presented in the formj

Wo(g, 1,7) = V0. (q,1,7) 12
where .

©e(g. t+T.h) = g.(q.1, ). (1.3)

The quantity £ entering into equation (1.2) namely a quasi-energy, is defined moduloe ko,
(0 =27/T), ie. & = e+ mhw, m € Z. States of this type play a key part in describing
quantum-mechanical systems subjected to strong periodic external actions, when standard
methods of the non-stationary perturbation theory appear to be inapplicable [7]. The results
obtained with the use of the quasi-energy method are reviewed, for instance, in [8).

1 The existence of a Floquet solution of the type (1.2) is an intricate mathernatical problem, Substantial progress
pertaining to this question has recently been made [3-6].
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5654 A Yu Trifonov and A A Yevseyevich

Incidentally, as noted in [9], the quasi-energy states, equation (1.2), are a particular case
of the cyclic states introduced by Aharonov and Anandan [10, 11] (see also [12]). Cyclic
evolution of a quantumn system on a time interval [0, T] means that the state vector W(z)

has the form

(i) =P e[0T (1.4)
where '

F(T) — £0) = ¢p(mod 27) (1.5)

@(T) = ¢(0). (1.6)

The full phase ¢ of the wavefunction equation (1.4) is the sum of the dynamical phase

5= _p! f’*’ G SYOLH Y @) wn
0 (@O @)
and the Aharonov—Anandan geometric phase (non-adiabatic Berry phase)
[T M)
r=i] e 8
Here and below, the top dot denotes a time derivative. Comparing equations (1.2) and (1.4),
we obtain that the function f(z) for the case of quasi-energy states is given by

F) = —~h"ler (1.9)
and for the full phase ¢, according to equation (1.5), we have
¢ = —h~'eT (mod 27). (1.10)

In view of equations (1.7)-(1.10), the Aharonov--Anandan phase y, corresponding to a given
quasi-energy state W.(g, t, %) can be determined by the formula

» [T (e HE) Y
Ve R eT(mod27) +h j{; dr AT (1.11)

Note [13] that the theoretical status and the physical interpretation of a phase in
quanfum mechanics have not been fully established. The possibility of measuring it in
experiments is essential (see [13-15] and references therein). Hence, the elaboration of
effective approximate methods is an urgent problem.

Among the solutions to equation (1.1) that satisfy the quasi-peridocity condition,
equation (1.2), one can distinguish a family of quasi-classical asymptotics ¥,, having the
following properties.

(i) The W, (g, ¢, %) functions are mod O(%*2) approximation solutions to equation (1.1).
This means that

) &
(—mat + H(t)) "ps.,(q, r’h‘) = Uv(qi t: h)
" (1.12)
N t, .T'l 0y = O 2 .
[max, [vv(q }lle(Rq)_ #7)

(ii) The solution ¥, approximates the corresponding exact solution W to the Cauchy
problem ¥,_, = ¥, (7,0,%) to O(h*%) accuracy. In other words, on the time interval
[0, T] the estimate

1W(g, 1,B) — ¥e, (g, 2, W) Lome) = OF*) (1.13)

is valid.
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(iif) For every ¢t € [0, T), the solutions, equation (1.12), form a complete orthonormal
set with an accuracy of O(%%?) in the space of states of the quantum system equation (1.1):

Wy, | s} = 8y + OGS, (1.14)

(iv) The functions ¥, have the form of wave packets localized in the neighbouthood
of a given T-periodical classical trajectory. Such states, if any, are named quasi-energy
trajectory-coherent states (TCSs).

The solutions ¥, and the respective quasi-energy &, are built up in an explicit form in
section 2. The Aharonov-Anandan phase y., for these states is calculated in the quasi-
classical approximation (with an accuracy to O(R!/2)) with the use of equation (1.11)
in section 3. It should be particularly emphasized that the above-mentioned accuracy of
approximation for the phase y,, dictates the necessity of using W, states that satisfy the
starting equation (1.1} with an accuracy of no less than Q(hsﬂ)T. Section 4 considers the
case where the Hamiltonian of a quantum system depends on time ¢ through a set of slowly
varying T-periodic functions R(t} = {R;{#)}, j = 1, N. An asymptotic expansion of the
quantity ye, in terms of the adiabaticity parameter T~! is obtained. It is shown that the
Aharonov—Anandan phase y,, coincides, to a zero approximation, with the Berry phase [18]
found in [19]. Some examples of the Aharonov—Andandan phase y,, for quantum systems
such as the sinusoidally forced harmonic oscillator and an electron in the Redmeont field are
given in section 5.

2, Construction of quasi-energy spectral series of the Schriodinger operator that
conform to stable cycle motions of a classical system

2.1. The leading term of the asymptotic

0
The leading term W, of a quasi-classical TCS is an asymptotic mod O(%>%) solution to
equation (1.1). It is built up in terms of Maslov’s complex germ theory [20,21]. Here, we
describe briefly the algorithm for constructing such selutions.

The Weyl symboli H(p,q,t) of the operator [{:T (t) will be assumed to be a smooth

function of all its arguments (p, g) € Rj,z,”q, t € R!, increasing, together with its derivatives,

at [p| — co and [g] — co no more rapidly than some polynomial in |p| and |gf, and
uniformly in #. Let us relate the function H(p, g, t) and the classical Hamiltonian system

p(t) = —Hy(p.q.1) g(t) = Hp(p.q.1). 2.1)

Let r» = (p(#), g(t)) be some fixed closed phase trajectory of the system (2.1), with period
T. Assume that the system, in variables that corresponds to the Hamiltonian H(p, g, ¢} and
the T-periodic phase trajectory ry,

W) = —Hpp ()W () — Hyy (1)Z(2)
Z(t) = Hyp(OW () + Hpy(DZ(@)

admits a set of n(n = dimR,) complex, linearly independent Floquet solutions (¢} =
(We(), Ze(@)™:

@t + T) = %7 g, (1) Im$2, =0 (2.3)

(2.2)

# Note that a similar situation occurs in the theory of spontaneous radiation [16, 17].
i Here and below, we consider the case of i ~1-pD0 Whose symbols are independent of the parameter %.
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that satisfy the conditions

{a, ;} =0 {ax, a1} = 26y ki=1n. 2.4)

Here, brackets {.,.} denote the antisymmetric scalar product and # denotes complex
conjugation. It should be stressed that in terms of the Floquet theory for the linear
Hamiltonian systems with periodic coefficients [22], the conditions (2.3) mean the phasc

trajectory r; is stable in a linear approx1mat10n The 2n-dimensional vectors a;(¢), ak(t),
k = 1, n, form a symplectic basis in CW z» and the n-dimensional complex plane r*(r,)
spanned by the vectors 4,{¢) forms a complex germ on r; [21). From the vectors W),
Z(t), k =1, n, let us construct the square n X n matrices

B(z) = (W1(t), ..., Wult)) C) =(Z1¢), ..., Z,(2)). 2.5)

The matrix C(z) is non-singular; thus the symmetric matrix Q(2) = B()C~() with the
positively defined imaginary part

Im Q@) =[CTOI'CT(®) >0 (2.6)

is defined. Here C* denotes a matrix Hermitian conjugate to C.
Let us introduce a complex action

'
S@.0) = [ at((p@, 403~ HEY+ (p), A9) + 150, 200Ag)
Ag =g —q() @n
and define a function of the WKB type, with the phase given by equation (2.7), as

0 ol M@ [i :
‘I-'eo(qsf,h) - IO,I} - mexp {RS(Q7 Z)] (2'8)

where Np(%1) = (rh)~"/* is a normalization factor. Let us set up a correspondence between
the vectors a; (1), 3;‘ {t), £ =1, n, and the creation and annihilation operators

1 * *
aGi) = E«zk (t), Ap) — {Wi(D), AG))

1 @9)
8 (t) = —=((Zp(t), AP} — (Wi(2), AG
((2) Jﬁ(( k(). APy — (Wi(2), Ag))
where A p = —ih3; — p(¢). It can readily be ascertained that the relationships
G @) =1[87.811=0_  [&.& =28y (2.10)
10,2} =0 Lk=1,n (2.11)

are valid. Acting sequentially with the creation operators &; on the vacuum state (2.8), let
us build a set of functions of the form

Belg 6 7) = v, ) = I'I = (@10 1). 2.12)

Such states are called trajectory-coherent states (TCSs) in [23]. Atevery ¢z € [0, T'1, itcan be
shown that the functions |v, t) form an orthonormal set, complete in La(Ry), of solutions
to the Schrédinger equation:
(—iRd + Ho()v, 1) = 0 2.13)
Wt v, t) =38y, (2.14)
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where ﬁo(t) is a square-law operator of the form

Ay(0) = H(ty + 8 H(t) + 1821 1) ) (2.15)
Here, the operatior designation g"H () refers to the kth term in the Taylor series expansion

of the Weyl-ordered operator H () in terms of powers of the operators Ap and Ag in the
neighbourhood of the phase curve ry, i.e.

- o9 a2\
5 H(f)=( Ap!a_ + AQ=— H(Z,ysr)
z dy

Let us introduce a class of functions of the form

i A
P= {f, Jf=exp [%(S(t) + {p(®), Aq))] @ (7-% t) @8, 1) € S]

z=p{t) - (2.16)
y=q()

S() =j;((p(t),é(f))_—H(t))df 2.17)

where ¢ (¢, £) is a smooth function in ¢t € [0, 7] and S is a Schwartz space with respect
to &£ € R*. The explicit form of the functions (2.12), testifies to the fact that they form
an orthogonal basis in the space P;. Hence, it follows, in particular, that P; is dense

throughout LZ(R;). Let é(h‘”) designates an operator F La(R}) — La(RY) for which the
estimation || ﬁ'tp[] L@y = O®™), o > 0, is valid on the set ¢ € P}. It can easily be checked
that in this sense, the asymptotic estimations
Ap=0G"  Ag=0@"D (2.18)
[—if3, + H(2) + Go()] = O(h) (2.19)
where do(r) = 8H(2) = (§(t), AP) — (p(r), Ag), are valid (see e.g. [21,24]).
Let us expand the operator Ic;' () in the Taylor power series over the operators Ap and
Ag to the second order:

@ = Bo) + Bs. (2.20)

By virtue of the fact that for the remainder term Rs of the Taylor series (2.20), 133 = O(h3/ )
is valid, we obtain, with the use of equations (2.13) and (2.19), that the functions (2.12) are
approximate mod O(%*2) solutions to equation (1.1).

Further consideration requires some issues from the preceding constructions. Thus,
solving equation (2.9) for the operators Ap and Ag, we obtain

Ap =ivh/2 (3 )é — B(:)a+) Ag =i/A/2 (c (t)d — C(z)a+) @221)

where 8t = (@*,...,a"", & =(4,...,a,)". Furthermore, with equation (2.4) taken into
account, it can read11y be checked that

Ct@) B(t) — BY@)C(@) = 2il CT()B(t) — BT()C(H) =
COCT®—CHCH =0  BOBT(® - BEBT(@) =0.

Here, CT denote matrices transposed to C, and I = [|§;; [[xxx. Finally, using equations (2.10)
and (2.11) we may prove the validity of the identities

(2.22)

{(vldeivy = (v|&F v} = (vidkd|v) = (1&g & v) =

n 2.23
(VIaF @v) = vidy <v|aka:f[»>=(vk+1)am. 2.23)
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2.2. Construction of quasi-energy TCss (mod O (%))

The scheme for constructing the states W, that satisfy equations (1.12)~(1.14) is similar
to the general scheme for constructing the high-order approximations for the TCSs of the
Schrédinger equation [24]. Note that in the case of a time-independent Hamiltonian, the
high-order approximations for the semiclassical wave packets were also constructed in
[25-29].

We shall find the solution to the problem (1.12) in the form

=, ) + Vhp" + o + ORY?) (2.24)
where @ and qaff") are unknown functions from the class P%. Let us expand the operator

Ia;' () in the Taylor power series over the operators A p and Ag vp to fourth order included,
and substitute equation (2.24) into equation (1.1). Then, gathering together the terms of the
same order in #}/2, we obtain, in consideration of equation (2.13), the set of equations

(=ird, + o)W + BP @)y, 1) = (2.25)

(—ik8, + Hy()ho® + BP ()R + H(“J Olv, 1) =0 (2.26)
where

B9 = (—_1)—!3711(:) = 0@ =34 (2.27)

The functions qou , J = 1,2, can be found in the form of an expansion in terms of the
complete orthonormal set of states |v, ). Then, having determined the coefficients of the
above-mentioned expansion, we find

o = —iF O, ) + Z ColV', 1) (2.28)
=0
0@ = —iF Oe® - iF O, 1) + Z C2, 1, 1) (2.29)
V=0

where the operators f-}(t), J = 1,2, have the form

t
H2E - ! 21504 .
WRE 00 = 7 h;Dw 0 [ @, APl 230
and the integration constants C.., €2, are chosen such that the conditions for quasi-
periodicity and orthonormality of the states, equation (2.24), are fulfilled. Using
equations (2.28) and (2.29) we find for the functions ¥,,, the expansion

V., (g,1,h) = [1 ~iWRF () — ihFa(r) - nﬁf(r)} > Cw®IY, B+ 0¥, (231)
- v [=0

Here

2
Cowr (1) = 8y + ) _RH2CE,. (2.32)
k=1
To substantiate the validity of the estimate (1.13) we use the standard expedient as
follows. Let Ux(z) be the time evolution operator for system (1.1). Then, in accordance
with the Duhamel principle we have

1 /. .
Wig,t.n) =W, (g.t,h) + Ez-f dz Up(t ~ T)uy(g. T, ). {2.33)
0
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Hence, in view of the unitary nature of the operator I};,(t), we obtain on the time interval
[0, 71

3
I = W, <7 fo 10t — DG, 7. 1)z, dr < T/ max. fvula, 7 Wl

= Q).

2.3. The quasi-energy spectral problem

To obtain a quasi-energy spectrum that corresponds, in the limit % -» 0, to a stable motion
of a classical system along a closed trajectory r,, we isolate the functions from the family
(2.31) that satisfy modulo O(ﬁy 2) the quasi-periodicity condition

W, (g, t+ T, B) = e 5T, (q,1,R) + OGY2). (2.34)
The quasi-energy £, will be found in the form of the expansion in f:
2
gy =»_Rs® + O (2.35)
=0

Substituting equations (2.24) and (2.35) into equation (2.34) and equating summands with
the same power of %1/2, we obtain the chain of equalities

|va, 2+ Ty =e BTy 1) (2.36)
PP+ T) =e P TN ) (2.37)
PP+ T) =T (P () — 1P (T)v, 1)) (2.38)

where B, =7""e® + £, From equation (2,36), in'view of the explicit form (2.12) of the
functions |v, T} and relationships (2.3), it follows that

1 7 ] L
Bu(modw) = —— f d((p@), 4®) — HO) + Y e+ (239)
RT Jo k=1

where v = (1, ..., V,) is a set of non-negative integers defined in equation (2.12). The
conditions (2.37} and (2.38) in turn allow us to find the constants Cyy, v 3% 1/, and the
quasi-energy additive &2 (see appendix A).

Finally, we must show that with properly chosen constants C,, (8) = (143 7_, B*2C¥),
the functions (2.31) form an orthonormal {mod O(%>/?)) set of states. To do this we use the
identitiest

CWIE Y - pFM) =0 ' (2.40)
that follow from the definition (2.30) of the operators .7:} Then it can readily be seen that
- oy n - . 1 2

(We, | We,} = W[(L+BLFTF — FE— (B DIv) + 2VRERe C, + 27 Re C,

X, 1
+1 Y [ Col? + O@Y). (2.41)
V=0

Further, we put
1 . 3 n_ 1 1133 o
—Sm(vlé HOW)Y = Ax() ——-3m(v |87 H () |v) = Ay(e). (2.42)

1 To simplify designations, here we will ignore the time dependence of the functions |v, £} and the operators
Fi (). :
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Then for the operators in the square brackets in equation (2.41) we find

20 4 I
(RFT Fijv) = E./; dt1/; dry Ay (21} Ay (22)

[v']=0
o0 H 71 -
CCATED B LYY RE WS 243)
[1]=0 v O o
n el t - T
oncE =Y [ anbow [ amssm.
=0

In consideration of equation (2.43), expression (2.41) takes the form

1 =1 4 t
(¥, | W) = 1+ 2VARe &, + BReCI 42 Y |G+ [ dn [ dmir(a, 2
Ivl=0 0 0

t T : T2
- f dy f dnA(h, w) — f dn f dr Az, m) + O(R¥%) (2.44)
] Q o] 0

where A{n, ) = fog::o A“r(rl)ziuf(rg). The sum of the last three summands in
equation (2.44) is identically zero. Hence, for

1 2 1 & 1,
ReCy =0 Recv=—§[;m1cw1 (2.45)

the right-hand side of equation (2.44) is equal modulo O(%*?) to unity. The property of
orthogonality (mod O(%%?)) of functions (2.31) for v % ' is proved in a similar way.

From the above results it follows that the quasi-energy TCSs (2.12), in the important
particular case of quantum systems with a periodic square-law operator, form a complete
orthonormal set of exact solutions, and the quasi-energies corresponding to these states are
&, = #f,, where B, are given by equation (2.39). Exact resulis related to the construction
of quasi-energy states for square-law systems were also obtained by Matkin and Man’ko
[8]. Moroever, it may be said that in [8,30,31] the quasi-energy spectral series for these
systems is constructed in the region of instability motions. The mathematical procedure
developed in [8] can turn out to be useful for generalization of the results of this section in
the case of unstable isolated periodic orbits [32].

Finally, the works [33,34] should be noted; they are devoted to the quasi-classical
quantization of T-pericdic systems. Here, as distinct from the standard approach, the time
t{mod T) plays the part of an additional angular variable, and the motion of a classical
system is considered in an extended phase space {g,f, p, p;}. In this consideration, the
guasi-energy spectral series are generated by the quantization conditions of these motions
in accordance with the well known Einstein-Brillouin—Keler procedure (with Maslov’s
topelogical characteristics taken into account).

3. The Aharonov—Anandan phase
Now we are going to consider the calculation of the Aharonov—Anandan phase

corresponding to the quasi-energy states given by equations (2.31) and (2.32), To do this,
we use formula (1.11) and neglect the O(:'/2) order summands:

T
Ye, = ~BT +17! fo de{H (1) + hi{q, 115'(;;)(?)) - {p, f}(u)(t))) +30IBHOM). @D
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1 1
Here, the vectors Pq,)(t) and g, (z) are defined by the formulae

(Ve A%y, (1)) = h Doy (1) + O

; (3.2)
(0, (DN AGIY,, (1)) = B Q1) + ORY?)

and specify small (O() order, & — 0) fluctuations of a quantum particle in the ¥,, around
a classical phase trajectory r; = (p(1), g(t)). Using equations (2.21)—(2.23) we can then
easily calculate the correlation matrix that characterizes the quantum fluctuations of the
dynamic variables p = —ifd,, § = g, relative to their average values (5), {§) in the state
defined by the leading term |v, ¢} of the asymptotic given by equation (2.12):

G = PlAgag ) = 7 (CODOICHD + EOGDWCT®)
ok :
(Opput = (VIABR APV} = 1 (B(t)D(v)B"'(t) +B (t)D(U)BT(t))H (3.3)
N h *
©@pdu = 0IA PrAg v} = 5 (BODMICH®D) + B ODOICT®) .

Here, D(v) = diag@w + 1, ..., 2v, + 1), oup = L[4, Bl) — (AHB) = L(1a4, ABLY),
where AA = A — (A), AB =B —(B), [A, Bl; = AB + BA. In deriving equations (3.3)
we used the equalities {v|p]v) = p(£), (v|g|v) = g(¢). With equations (3.3), it can readily
be shown that

wIFH®W) = gsp Re(C()D(W)BT(2) — BD(MWCH ()
= —aReY e+ D {a®, &0} (3.4)
k=1

Note that the quantity under the summation sign on the right-hand side of equation (3.4) in

view of equation (2.4), is real; hence, the Re sign can be omitted. .

Let us introduce vectors ag(t) = {p(t), §(z))* and Xon(t) = (119(”) (), ql’(,,)(z)) . Then,

substituting the explicit expression for B,, equation (2.39), into equation (3.1), and using
equation (3.4), we find .

T - aT
Yo, =B fo AP, 4()) — fo dt{ao@), X))

n T N
-y W+ %)[mk +2 fo dr{amak(r)}]. @35)

ksl

If instead we now introduce the vectors, equation (2.3), T-periodic vector-functions
G () = e~ g (1) (it +T) = a() (3.6)

equation (3.5) will take the form

T 1 <& T R T
ve, =B fo dHp@, 40 = 3 D 0k + D) .,L dr{&k,ak}— | atlastr. xa ). 67
k=1
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Using the equations of motion for the quantum-mechanical average of the operators p
and & in the state W, :

d . i é -

G0l = 20w ]| 0 5] 1)

d 1 & (.8
S @la1) = vl [ 0.2 10)

we may obtain an equation for the vector xun(#} (see [24,35]). To do this, we expand the
left- and right-hand sides of equation (3.8) in terms of powers of #1/2 up to quantities of
the order O(%¥?). After simple algebraic manipulations we find

d

a‘;xw,} = Hyar{t) X0 '5"%-7:0)) () (3.9
where

A —Hp(t) —Hy @

Heat) = ( Hpp(t)  Hpe(1) )

and
-V,
Fu @) = [ ( v q) Os H(p. ¢, t)] i)’ (3.10)
P g=q(1)

Here, [0, denotes an operator of the form
Wy = (Vg, 044(8)V,) +2(V;, 055(2)V,) + (Vg, 04 (1) V) (3.11)

where the matrices oy, (2), ... are defined by equations (3.3). With equations (3.3), the
vectors F(,)(t) can be presented in the form

-V ul *
= q 1
Foy) = [( v, )kZ_:,(vm D {a40), Hualp, 4. r)ak(z)}] ey B2
‘ = g=q(t)
Note that the symplectic vector product in the right-hand side of equation (3.12) is a real

quantity.
Equation (3.9) is a non-uniform linear Hamiltonian system with T-periodic coefficients.
Its general solution has the form

n 1 t "
){(UJO‘) = Re l:;;:zk(t) (E_/[; dz {.F(U)(Z'), a;c(r)} + B(u),q) ] (313)

The integration constants By, are found from the condition that the function yq;(f) is
time-periodic: '

Xo)(t + T = X (). (3.14)
Let
1 x
fon® = 5 [ @5 (Fu@.&@]. 3.15)
1Jg
Then condition (3.14) means that
M (Bt + T) + Byl = Buw(®) + Bk 3.16)
This equality is fulfilled if
Bow(T)
Bok = oy — - 317
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Using equation (3.13), we obtain the expression for the Aharonov-Anandan phase (3.7) as
. T . 1 n i T L ¥ T i i)
re =7 [Lartp, 400~ o D [0 [ R [ 05> et )

X[Z(vﬁ%) fo dr {&(x), <Ef(r),VHm<r)>ak<r)}+Bw] (3.18)
k=1

where

(3.19)

VHyu(7) = [(g:) Hyx(p, q, T):| p=ptc)

g=4(7)
The Aharonov-Anandan phase j,, comresponding to the quasi-energy TCSs "W,
equation (2.31), is thus completely determined by two geometric objects: the closed phase
trajectory r, of the Hamiltonian system (2.1), stable in a linear approximation, and the
complex germ r”(r;} formed from » linearly independent Floquet solutions to the system
in variations, equations (2.2).

4. The Aharonov—-Anandan phase y_ in the adiabatic approximation

Suppose that the evolution of a classical systemn is defined by a Hamiltonian H(p, ¢, R(?))
depending on time through a set of slowly varying 7-periodic functions R({t) =
(R1(), ..., Ry(t)). For this case, let us obtain an adiabatic approximation for ye,. To
do this, as follows from equation (3.5), it is necessary to build up adiabatic solutions to
equations (2.1), (2.2), and (3.9).

To begin with we construct the adiabatic solution X(t) = (p(),q(N)" to the
Hamiltorian system (2.1) that would satisfy the condition

X¢+T)=X@®. {4.1)

To find this solution we use the familiar method as follows. Let us put r = s7, where
s plays the part of slow dimensionless time. The solution will be found in the form of a
formalt asymptotic series in terms of the adiabaticity parameterf 1/7T

0 11
X)) =X+ =X ) +00 /7. (4.2)
Substitution of equation (4.2) into equation (2.1) results in the relationship
10, (—Hi( 1 ! 2 :
X = () LHato) X +00/TY “3)

where

Hy(s) = Hy(p.q, R(s)) R(s) = ROlmsr

p=P (5)
1]
g=4 (5)

t Real dimensionless parameter of adiabatic expansion is & = maX,=1 yy=1,» {QEI : %}, where £; is defined in

(2.13) (see e.g. 136,37]).

1 The problem of vetity of two-scale asymptotics has not been widely investigated in the mathematical literature,
This question is difficult as there are two lmits involved: T — 00 and & — 0. It can be shown, as T~1 ~ &°,
& > 1, that the expansion into series of T=1 - 0 will not impair asymptotics by % —» 0 because quasi-ensrgy
asymptotics are uniform in 7.
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and the prime denotes a derivative with respect to 5. Then, to the zero order with respect
to the adiabatic parameter 1/T we have

H, (3 (), (5), ﬁ(s)) =0 @4)

8, (3 )4 ), R'(s)) =0 @5)

0 0 0
and, hence, the vector X (s) = (P(s),4 (s))T specifies the rest-point for the function
H(p, g, R(s)) at every fixed value of 5. Thus, we have

P (s) = Po(R(s)) = Po(R(2)) 3(5) = Qo(R(N) = Qo(R(©)).  (46)

Obviously, to the zero approximation, the periodicity condition (4.1) is fulfilled.
To the first approximation, according to equation (4.3), we obtain the algebraic system
of equations

1 0
Ha(s) X =X “.7)

If the assumption is made that the rest-point given by equations (4.6) is stable (for every
§) in the linear approximation, then there exists a set of linearly independent eigenvectors
Fi(8) = ap(R()), k == 1, n, of the matrix Hya.(s):

0 - 0
Hal)fi=i2% (R} i mou=0 “5)

such that

U i} =0 {fk»}:}=2i5kt k1=T7. 49)

According to Maslov’s terminology [21], this set of vectors specifies the simplest complex
germ on a zero-dimensional Lagrangian manifold. The solution of the system of
equations (4.7) with equation (4.1) has the form

I . .
X = (’f‘”) =Re[Z;—J-r*(_L)—[fk(s>,§'(s)H. 4.10)
g (s) =G (R(s))

Thus, for the case where formulae (4.6) and (4.10) hold, the function (4.2) is the sought-for
adiabatic solution to the Hamiltonian system (2.1).

Let us now construct adiabatic solutions to the system in variations (2.2) that would
satisfy the conditions (2.3) and (2.4). Expanding the matrix H,,(z) in the neighbourhood
of the stationary point specified by equations (4.6) we have

Hoae(0) = Hoae(s) + % (VHm(s), X (s)) +O(/TD) @.11)

where V Hyr(s) is given by equation (3.19). We look for the solution as an expansion in
terms of the eigenvectors fi(s), fi(sh

il

)=y [Au:(sa ) fi(s) + Au (s, 6) F:] 4.12)

I=1
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with coefficients

A(s,8) = Auts, 0) + 7 Au(s,6) + O/ T
4.13

0 1
- v 1 -
Ap(s,8) = Ap(s,8) + T Ap(s, 8) +0(1/T?.

Here, @ = (TP (s), ..., T®,(s)) is a set of “rapid’ variables where the real functions ®;(s),
k = 1,n, are unknowns independent of 7. Obvionsly, the time derivative in this case is
given by §; = %as + ®'(s)8p. Substituting equations (4.12) and (4.13) into equation (2.2)
and equating the summands with the same power of 1/7, we obtain, to the zero order,

0

aAIk .0 ¢ BA[k _0 2
= =1y Ag. .14
Z rre 190 A @] %, Ik 4.14)

j=l
Integration of equations (4.14) gives

0 20 L 9 n 9 o & e
Aw(s,8) =) Aug(@)@¥™Y Ay, 0) =) Agj(s)e ¥ (4.15)
=1 =l

0
0 d
where A, (5), Apy(s) are the integration constants. The additional requirement that the
functions (4.15) be 2m-periodic with respect to all rapid variables 8;, j = 1, n makes it
possible to find the functions ‘

o .
@6 = [ Skenas *.16)
and sets the following limitation for the choice of the integration constants:
0 0 0 ¢
Aui () = Cre(s)yj A = Cu8)dy;. 4.17)

From the quasi-periodicity condition (2.3) for the solutions (4.12) and from equations (2.4),
it, in turn, follows that

0

0 R pet

Cir(s) = dye™ M) Culs) =0. (4.18)
As a result, the zero approximation to the functions & (f) is given by

. So 0 .
a°k(:) = fi(s)el—MeiD) b=T f Qu(R(s)) ds 4.19)
0

where the real functions /N3 (s) remain unknown.

Then, to 2 first-order adiabatic approximation, we obtain the set of equations for the
1

fonctions jluc, jzki
1
n i} a * D
ZQ. A IQI Atk - 561(9“ s (25[&.)\[ [fh Efk}) =
j=1 (420)
n 0 a A
ZQ, !k+IQ:Azk—§ﬂl(e" N"){fia kal=

where

-2 (vaw(s), X (s)). @21)
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As in the above case, we see the solutions to equations (4.20) complemented with the
condition for the 27r-periodicity with respect to the variables 9;, j = 1, r, and relationships
{2.3) and (2.4). Simple manipulation results in

1 [ = D

Ni(sy = 5[0 ds {fk, agfk} (4.22)
1 . 1 1—-34 * I

Auls, 8) = &M | C )y + ——— {f;, Eﬁc} 4

2 (Qz - Qk)
L , 1 D
AUC(S, 6) = el(ﬂiz‘-‘\lrk(-f))_u—a— [ﬁ, afk} . (424)
2 (S'Zz + Q:c)

1
The functions Cr(s) entering onto equation (4.23) are determiped from subsequent

1 1
approximations; moreover, they satisfy the condition Cx(s + 1) = Ci(s). It should be
stressed that relationships (4.23) and {4.24) have been obtained with the supposition that

0 -
there are no resonance correlations between the frequencies, ie. E:,;, m; 2 (R(5)) # 0,
mj e Z. .
Substitution of equations (4.23) and (4.24) into equation (4.12), and consideration of
equation (4.15) results in

ag(t) = SO 3 (1 +a ék(s)) b+ — {},, P—fk} f
I=1 T 27 (& — ng ) dS
1 — %
1 D.]:* .
s a—sfk Ful +0O/T5. 4.25)
2T (Q[ + QA—.)

Comparing equation {4.25} with the quasi-periodicity condition (2.3) we obtain

S 1 (1= D 2
Qk—fo Qk(R(S))dS—ﬁj; {fk:gfk} ds + O(1/T%). (4.26)

The adiabatic soluticn to equation (3.9} is built up using the same scheme. As a
result, the sought-for {mod T~} solution that satisfies the T-periodicity condition (3.14) is
presented as

1 I, x 1
X)) = 5 Re [Z Frl8)——{Fpy (5), fk(S)}:[ +0(1/T) (4.27)
k=1 2u(R(5))
where Fqy(s) is the zero approximation for the vector function F,)(t) given by
equation (3.12).
Substituting equations (4.19), (4.26) and {(4.27} into equation (3.5), we obtain

Yo, = Bu(C) + O(1/T) (4.28)

where

____I_ aQU(R) ) Z 1 " 1) .
5.0 =7 § (e, 222 )dR;+;(vk+2)5£C [, 0w} ar @29
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and
20y < L 13 1
’ 20k 23w
0
* X (R
x | Re ((VHW(R),aa(R» az(m,%]ﬂak(m. @30

Here, C is the closed loop drawn by the end of the vector R(z). ¢ € [0, T] in the space of
parameters (Ry, ..., Ry).

As follows from the results of [19]f, the expression for £,(C) given by formulae (4.29)
and (4.30) coincides with the quasi-classical expression for the Berry phase associated with
the adiabatic motion of a zero-dimensional Lagrangian manifold with a complex germ,

5. Examples

As the first example illustrating the general scheme described in section 3, let us consider
the one-dimensional sinusoidally forced harmonic oscillator [31,38,39]. In this case, the
Hamiltonian of the system has the form

(@) = 5%+ Lo?§? — g F sinayt ” (5.1)
where ), wg, and F are constants. Thus, we have J24 t+7T) = H (1) with T = 2m /wy. The
Hamiltonian (5.1) conforms with the classical Hamiltonian

H() = 1p* + 1w*q* — g F sinept. (5.2)

The classical set of equatlons (2.1) for this Harmltoman admits a T-periodic solution
describing an ellipse:

F ) _
5 COS wo! g == 5 Sinwo! W # wy. (5.3
) w* — wy
In view of the fact that the matrix H,, = constant, the problem of constructing the Floguet
solutions (2.3), normalized by the conditions {2.4), is reduced to solving the spectral problem
for the matrix Hyy. Eventually, we find

Feg
p-—w Ct)o

it — \/‘5
But, according to equation (3.6) we have
@(t) = fy = constant. ' 7 (5.5)

From equations {2.39) and (3.18) it follows that, in this case, the phase p, is independent
of v and is given by
2

T ] Flagm g
o= [ a0 = ot 56)

t [19] contains the following errors;
(1) There are bound to be —v; instead of +v. in (6.9, (6.12) and (6.13).
(2) Matrix & was omitted in {5.27) which must have the form

[)
0 _ d'”.’;(R) ey [ AE(R) 3 ( [ X (R) })])
=R zm("'[c iR YEW® - ;gk(R) VAR, a@ dR), 2 o (R).
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Thus, it has a simple quasi-classical sense: the area covered by the radius vector of a point
moving over the phase plane.

Now let us comsider the motion of a relativistic spinlcss particle describing by the
Klein-Gordon equation

(B2~ PPt —mic ¥ =0  Py=ikd—edy P=-itV-— EA 67
in the Redmond field
cEog

(.‘Eg . H
Ap=0 A—-( —w—usmwg'+2y,
where § = ¢t — z/c, g defines right (g = 1) and left (g = —1) circular polarizations and
Ep is an amplitude of the electric-field strength. The problem of (1.3) and (1.8) in the field
(5.8) can be reduced, for the equation (5.7), to the problem considered before in the special
coordinate system.
Let us transform (o coordinates of the zero plane [40] in equation (5.7):

cos wf — %x, O) (5.8)

ug=1t—2z/c u=x Uy =y uy=t-+z/c. 5.9
Equations {5.7) and (5.8) take the following form in coordinates of the zero plane (5.9)%:

{4p0ps — 2?322 - 2’)'522 - m%c‘*}‘b =0

. . € R i — (5.10)

Pe= P~ - A P = —ihdy, k=0,3
and the scalar product is

1) = [ QUlE s+ (a0 5.1

A solution of equation (5.10) will be found in the form

9w, ug, it) = —% exp (%Aug,) W(ws, ug, 7)) tr = (1, #2). (5.12)
Thus, the function ¥ satisfies the Schrodinger equation
[—mauo + ﬁ(ug)} § =0 (5.13)
where
it = 1B} + B + mi?L e

A scalar product for the functions W has the form
By | By =22 f dre ¥, (5.15)

Hence, for the function ¥ one obtains the Schrédinger equation with the periodic
Hamiltonian (5.14), where ug plays the part of time.
The Hamiltonian system comresponding to the problem of (5.13) and (1.2) has the form

. c? . iewp
Wy = ﬂ'PJ. pL= __{UZ?J_
H E, FA

(5.16)
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w) (f+T) =uL(r) pLE+T)=pL() pL= (Pl) w| = (”'

P2
o) = 0 —-i
=i o)
Excluding p, from system (5.16) one can write
ec ;
ity +iwgoath) = ——.Ay.
L 1pTate ) TR
After integrating this equation one has
. , ec
Uy +iegoruy = —— AL + oy Q) = “1} = constant.
. 2A o
In the resonanceless conditions, e.g. wy # w,
—igaantg i ec ~ioawnio “ icawyT
Uy =e V] — —0p0 — —© 5 A (t)ydr
L] ZA 0

where v; = constant, one obtains the periedic solution in the form

P ,
Uy = ——0p01 —ozd;.
Wy o — g 25
From (5.16) and (5.19) one finds
= 2)&'&. + EA - ii—irr 2y -+
PL=ZuLm AL T o0 2c(wp — gw)”

The system in variations responding to the Hamiltonian (5.14) can be written as

ir 00 Aco% -_r:2 &o
W._120‘2W+2CZZ Z—ZAW 12022.

Thus,

Z+ iwga‘zz ={.
Denote eigenvectors of the matrix o as f;:

. 1 i§'
= ) = ’] ! ] o —
ofy=1% (For o) =8¢0 {.& ==l It .,/'2'(1)
So,
Wk

ak{u()):Nk(Zk) k=12
where

Zl = e—ifwouofc Wl — _lc _l'c'('o‘_;e-—i;’wouof;

, . Ao
ZZ = f—f W2 = —Ié'c—zof_{_

25]
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(5.17)

(5.18)

5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

From the normalized condition {a.qa;} = 2i;; one finds the constants Ny and { and,

finally,
M=N=So =
P72 el

and for the quasi-energy spectrum one finds

1 7. .
o= fo (FUY — (P 1)) A + ooy + ).

(5.26)

(5.27)
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Now let us calculate the integrals:

K 2.2 2 2 2 2.4
. ge“c woEf f E; moc
gy dt = —=— =00 __p H)dt = T.
].; e, ) 4wy — gw)? @ (4A(wu ~ gw)? *

Thus, for the quasi-energy spectrum and for the Aharonov-Anandan phase one obtains

gecPEs mic?
4oi(wy — gw) 4A
ge*PwoERT

4wy — gw)2.

By = +hawo(v + 3)

T {5.28)
hivy =f0 {pL, 21 )dt =

Thus, in the field (3.8) the semiclassical [imit of the Aharonov—Anandan phase is, essentially,
the symplectic area averaged over the motion of p1, . (see also [41]).
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Appendix A.

1
Firstly we use equation (2.37) to find the constants C,,. To do this, it is convenient to
rewrite equation (2.28) in the form

o = Z (ﬁ‘”(t) + c) v, 1) (A1)
W=0

where
ﬁ(l)@) = —'-——'—i f‘ dr(v' t|§3H(7:)|v ?:) (A 2)
i 3!713/2 0 ’ T ’

In view of the fact that the set of functions |v, ¢) is orthogonal and complete, we conclude,
based on equation (2.37), that

: 1 " 1
e BT80N 4 T) 4 Coe} = €T {ﬂf,ﬁ?m + c} : (A3)

Tt can readily be seen that with a properly chosen constant 617 o3 Telationship (A.3) is fulfilled
for any value of ¢. To do this, it is sufficient to differentiate equation {A.3) with respect
to ¢ and be convinced that this will give an identity. Then, setting ¢ = 0, we obtain from
equation (A.3),

] BINTY(A ~ 8,v)

Co = —109;-—;5,!)'? 1 + Cvaw (A4)

Note that for v = V', equation (A.3) becomes an identity since, in this case, the coefficients
B (1) are zero in view of equations (2.21) and (2.23).
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2
The constants €,y and 2@ can be found in a similar way from equation (2.38). Let us
put

: :
B = —ﬁi-f dr(v', 1§ H(z)|v, 7)

: : o ; ) (A.5)
ot (1) = —Wfo de (v, TSP H ()|}

Then, function (2.29) can be represented in the form
ksl 2
9952) = Z {auu’(f) + ﬁﬁa @)+ va’} IV, £). (A.6)
[v'|=0

Substituting equation (A.6) into equation (2.35), we obtain the condition
. 2
e (s (¢ + T) + B2+ T) + Cuv}
. 2 :
= 7T o (1) + B (1) + Cowr — 6P Ton}. (AT

v

By analogy with equation (A.3), from equation (A.7) it follows that

2 (o (T) + BEDIA = 8y) 2
G = DL P RIC00) | By (A
62 = o (D) + BT, (A9)
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