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The Aharonov-Anandan phase for quasi-energy 
trajectory-coherent states 

A Yu Trifonov and A A Yevseyevich 
High Current Electronics Institute, Siberian Division, Russian Academy of Sciences, 
4 Academichesky Avenue, 634055 Tomsk, Russia 

Received 17 August 1994. i n  final form 27 March 1995 

Abstract Quasi-energy spectral series [E"(&). which, in the limit h + 0, compond to 
stable motions of a classical system along closed phase mjectories are built up in terms of 
a quasi-classical approximtion for the Scwdinger equation with an &inary T-periodic E-'.  
(pseudo)differential Hamilton operator. Usingtbe procedure of splitting the quantum-mchanical 
phase into dynamic and geometric components, the 'geometric' contribution of the Aharonov- 
Anandan phase yr. to the quasienergy s p e m m  is calculated. It is shown that the yI, phase, 
in the adiabatic approximtion, coincides with the Beny phase that corresponds to a cyclic 
evolution of a stable rest-point of a classical system. Some examples are considered. 

1. Statement of the problem 

Let us consider a quantum-mechanical system whose Hamiltonian is described by 

an arbitrary Weyl-ordered fi-'-(pseud0)differential scalar operator @-'-PDo) H ( t )  = 

IT(-%;, q. t ,  n), q E R;, and, moreover, is a T-periodic function of time: H ( t  + T )  = 

H(t) .  The wavefunction of such a system satisfies the Schriidinger equation 

0 

8 

8 

(-%ar+&) ) \Y(q.t,fi)-=O. (1.1) 

Zel'dovich [l] and Ritus [Z] were the first to distinguish an important class of solutions to 
equation (l.l), the quasi-energy states \Y&, t ,  fi), which can be presented in the formi 

\Y&, t ,  A )  = e(i")erpc(q, t ,  f i )  (1.2) 

where 

p~(q,t+T,f i )=po,(q, t , f i ) .  (1.3) 
The quantity E entering into equation (1.2) namely a quasi-energy, is defined modulo hw, 
(w = Zz/T), i.e. E' = E + mfiw, m E Z. States of this type play a key part in describing 
quantum-mechanical systems subjected to strong periodic external actions, when standard 
methods of the non-stationary perturbation theory appear to be inapplicable [7]. The results 
obtained with the use of the quasi-energy method are reviewed, for instance, in [8]. 

t The existence of a Hcquet solution of the type (1.2) is an intricate mathematical problem. Substantial progress 
pertaining to this question has recently been made [ 3 4  

0305-4470/95/195653+20$19.50 0 1995 1OP Publishing Ltd 5653 



5654 A Yu Trifonov and A A Evseyevich 

Incidentally, as noted in [91, the quasi-energy states, equation (1.2), are a particular case 
of the cyclic states introduced by Ahqonov and Anandan [IO, 111 (see also [12]). Cyclic 
evolution of a quantum system on a time interval [0, TI means that the state vector @ ( t )  
has the form 

Y(t)  = eif(’)yl(t) t E [0, TI (1.4) 
where 

f (T) - f (0) = rp(mod+) (1.5) 
rp(T) =@). (1.6) 

The full phase Q, of the wavefunction equation (1.4) is the sum of the dynamical phase 

and the Aharonov-Anandan geomeeic phase (non-adiabatic Berry phase) 

Here and below, the top dot denotes a time derivative. Comparing equations (1.2) and (1.4), 
we obtain that the function f ( t )  for the case of quasi-energy states is given by 

f ( t )  = -h-l&t (1.9) 

@ = 4 - 1  ET (mod 2a). (1.10) 

and for the full phase Q,, according to equation (1.5), we have 

In view of equations (1.7)+.10), the Aharonov-Anandan phase ye corresponding to a given 
quasi-energy state Y&, t ,  h)  can be determined by the formula 

(1.11) 

Note [13] that the theoretical status and the physical interpretation of a phase in 
quantum mechanics have not been fully established. The possibility of measuring it in 
experiments is essential (see [13-151 and references therein). Hence, the elaboration of 
effective approximate methods is an urgent problem. 

Among the solutions to equation (1.1) that satisfy the quasi-pendocity condition, 
equation (1.2), one can distinguish a family of quasi-classical asymptotics Yzu having the 
following properties. 

(i) The qEv(q, t ,  f i )  functions are m ~ d o f i ~ / ~ )  approximation solutions to equation (1.1). 
This means that 

(1.12) 

(ii) The solution Ye” approximates the corresponding exact solution Y to the Cauchy 
problem YI,=~ = Ysw(q, 0, h) to O(fi3/’) accuracy. In other words, on the time interval 
[O, TI the estimate 

(1.13) 



Quasi-energy trajectory-coherent states 5655 

(iii) For every t E [0, TI, the solutions, equation (1.12), form a complete orthonormal 
set with an accuracy of O(@/’) in the space of stam of the quantum system equation (1.1): 

(1.14) 

(iv) The functions Vsw have the form of wave packets localized in the neighbourhood 
of a given T-periodical classical trajectory. Such states, if any, are named quasi-energy 
trajectory-coherent states (TCSs). 

and the respective quasi-energy E,  are built up in an explicit fonh in 
section 2. The Aharonov-Anandan phase ye. for these states is calculated in the quasi- 
classical approximation (with an accuracy to O(hVz)) with the use of equation (1.11) 
in section 3. It should be particularly emphasized that the above-mentioned accuracy of 
approximation for the phase yew dictates the necessity of using YcS states that satisfy the 
starting equation (1.1) with an accuracy of no less than O@)t. Section 4 considers the 
case where the Hamiltonian of a quantum system depends - on time t through a set of slowly 
varying T-periodic functions R(t)  = { R j ( t ) ) ,  j = 1, N .  An asymptotic expansion of the 
quantity yEv in terms of the adiabaticity parameter T-’ is obtained. It is shown that the 
Aharonov-Anandan phase yes coincides, to a zero approximation, with the Berry phase [18] 
found in [19]. Some examples of the Aharonov-Andandan phase yEu for quantum systems 
such as the sinusoidally forced harmonic oscillator and an electron in the Redmont field are 
given in section 5. 

wd I w = L, + o ~ w  

The solutions 

2. Construction of quasi-energy spectral series of the Schrodinger operator that 
conform to stable cycle motions of a classical system 

2.1. The leading term of the asymptotic 

The leading term Y of a quasi-classical TCS is an asymptotic m o d ~ f i ’ ~ ~ )  solution to 
equation (1.1). It is built up in terms of Maslov’s complex germ theory [20,21]. Here, we 
describe briefly the algorithm for constructing such solutions. 

The Weyl symbol$ H ( p ,  q ,  t )  of the operator H ( t )  will be assumed to be a smooth 
function of all its arguments ( p ,  q)  E RE‘, t E R’, increasing, together with its derivatives, 
at IpI + 00 and 141 --f 00 no more rapidly than some polynomial in Ip[ and 141, and 
uniformly in t .  Let us relate the function X ( p ,  q ,  t )  and the classical Hamiltonian system 

0 

6 

A t )  =~ -H&, 4. t )  4 ( t )  = Hp(p,q. 0.  (2.1) 

Let rt = ( p ( t ) ,  q(t))  be some fixed closed phase trajectory of the system (2.1), with period 
T :  Assume that the system, in variables that corresponds to the Hamiltonian H ( p ,  q. t )  and 
the T-periodic phase trajectory r,, 

admits a set of n(n = dimR;) complex, linearly independent Floquet solutions a&) = 

(Wk(t). zk ( t ) )T:  . ,  

ak(t + T )  = e’*Jak(t) ImQk = o (2.3) 

t Nnte Ulat a similar situation occurs in the theory of spontaneous radiation [16,171. 
t Here and below, we consider the case of ~~-‘-PDo whose symbols are independent of the parameter A. 
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that satisfy the conditions 

A Yu Trifonov and A A Yevseyevich 

* - 
( a k , a ~ l = O  {a,e,ail=2i&r k , I = [ . n .  (2.4) 

Here, brackets {., .) denote the antisymmetric scalar product and * denotes complex 
conjugation. It should be stressed that in terms of the Floquet theory for the linear 
Hamiltonian systems with periodic coefficients [22], the conditions (2.3) mean the phase 
trajectory rr is stable in a linear approximation. The 2n-diensional vectors a&), &(t), 
k = G, form a symplectic basis in C$.z, and the n-dimensional complex plane rn(rr) ’ 

spanned by the vectors a&) forms a complex germ on r, 1211. From the vectors W(t), 
Z(t), k = fi, let us construct the square n x n matrices 

B ( t )  = (WI(t), ... 1 W”0)) (2.5) 
The matrix C(t) is non-singular; thus the symmetric matrix Q(t )  = B(t)C-’(t) with the 
positively defined imaginary part 

(2.6) 

C ( 0  = (Zl(t), . . . I  Z,(t)). 

h Q ( t )  = [C+(t)]-’C-’(t) z 0 

is defined. Here C’ denotes a matrix Hermitian conjugate to C. 
Let us introduce a complex action 

S(4,O = ldt((p(2).4r(t)) - W))  + ( ~ ( t ) ,  4) + +@q. Q(t)Aq) 

and define a function of the wKB type, with the phase given by equation (2.7). as 
Aq = 4 - 4(t) (2.7) 

where NO@) = ( i ~ f i ) - ” / ~  is a normalization factor. Let us set up a correspondence between 
the vectors a&), &(t) ,  k = fi, and the creation and annihilation operators 

(2.10) 
(2.11) 

are valid. Acting sequentially with the creation operators 2: on the vacuum state (2.8), let 
us build a set of functions of the form 

(2.12) 

Such states are called trajectory-coherent states (TCSS) in 1231. At every t E 10, TI,  it can be 
shown that the functions I w ,  t )  form an orthonormal set, complete in Lz(Ri), of solutions 
to the Schrodinger equation: 

(2.13) 

(2.14) 
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where eo@) is a squarelaw operator of the form 

i?o(f)  = H ( t )  +s^ 'H( t )  + $S^'H(t). (2.15) 

Here, the operator designation @ H ( t )  refers to 'the kth term in the Taylor series expansion 

of the Weyl-ordered operator H ( t )  in terms of powers of the operators A j  and Aq in the 
neighbourhood of the phase curve r,, i.e. 

L, 

(2.16) 

Let us introduce a class of functions of the form 

I 

W) = ( ( ~ ( t ) ,  40)) - H(t))dt (2.17) 

where #(<, t) is a smooth function in t E [0, TI and B is a Schwartz space with respect 
to f E R". The explicit form of the functions (2.12), testifies to the fact that they form 
aa orthogonal basis in the space Pi. Hence, it follows, in particular, that FA is dense 
throughout L z ~ ) .  Let bea) designates an operator @: Lz(R;) + Lz(R;) for which the 
estimation II@(ollhe) = O(?P), CL z 0, is valid on the set 'p E PA. It can easily be checked 
that in this sense, the asymptotic estimations 

(2.18) 
(2.19) 

where &(t)  =$IT@) = ( i ( t ) ,  A?) - ( p ( t ) ,  Aq), are valid (see e.g. [21,24]). 

Aq to the second order: 

L, 
Let us expand the operator H ( t )  in the Taylor power series over the operators A i  and 

G 
H(t) = $(t ,  + i3. (2.20) 

By virtue of the fact that for the remainder term l& of the Taylor series (2.20). & = 6(E3/') 
is valid, we obtain, with the use of equations (2.13) and (2.19), that the functions (2.12) are 
approximate mod O(h3/') solutions to equation (1.1). 

Further consideration requires some issues from the preceding constructions. Thus, 
solving equation (2.9) for the operators A j  aid Aq, we obtain 

where 2+ = (2?, . . . , 2:)=, 6 =~ (21, . . . , 2,JT. Furthermore, with equation (2.4) taken into 
account, it can readily be checked that 

C+( t )B( t )  - B+(t)C(t) = 2iI CT(t)B(t)  - BT(t)C(t)  = 0 
(2.22) 

Here, CT denote mahices transposed to C, and I = [l&j [ I n Y n .  Finally, using equations (2.10) 
and (2.1 1) we may prove the validity of the identities 

( t )CT( t )  - C(t)C+(t) = 0 ; ( t ) B T ( t )  - B( t )B+( t )  = 0. 

(Ul2klU) = (ul2:[u) = 0 
(ul2:2/lu) = UX&l 

(Ul2'2/1U) = (ul2$2,?lu) = o  
(2.23) 

(ul2'q[u)  = (ux+ 1)&. 
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2.2. Construction of quosi-energy TCss (mod O(h5/2)) 

The scheme for constructing the states Ysv that satisfy equations (1.12)-(1.14) is similar 
to the general scheme for constructing the high-order approximations for the TCSS of the 
Schrijdinger equation 1241. Note that in the case of a timeindependent Hamiltonian, the 
high-order approximations for the semiclassical wave packets were also constructed in 
[25-291. 

A Yu Trifoonov and A A pvseyevich 

We shall find the solution to the problem (1.12) in the form 

= IU, t )  + A&) + E @  + 0@3/2) (2.24) 
where vi1) and #) are unknown functions from the class P& Let us expand the operator 
oi 
x(t)  in the Taylor power series over the operators Ab and Aq up to fourth order included, 
and substitute equation (2.24) into equation (1.1). Then, gathering together the terms of the 
same order in Al l2 ,  we obtain, in consideration of  equation (2.13), the set of equations 

(-fiat + G0(t))h# + G(3)(1)&p:1) + r F 4 ) ( t ) i ~ ,  t )  = o 

$ j ) ( t )  = -$jjH(t) = ~ ( F P )  

(-%az + i20(t))A@) + P ) ( t ) l u ,  t )  = o (2.25) 

(2.26) 
where 

(2.27) 

The functions &I, j = 1,2, can be found in the form of an expansion in terms of the 
complete orthonormal set of states Iu, t ) .  Then, having determined the coefficients of the 
above-mentioned expansion, we find 

1 
j = 3,4. 

(A! 

(2.28) 

(2.29) 

where the operators 6(t), j = 1,2, have the form 

and the integration constants Civ,, C;,,, are chosen such that the conditions for quasi- 
periodicity and orthonormality of the states, equation (2.24), are fulfilled. Using 
equations (2.28) and (2.29) we find for the functions Ye”, the expansion 

Here 
2 

C,,,(h) = 6,,, + ~ h Y 2 C ~ , .  (2.32) 

To substantiate the validity of the estimate (1.13) we use the standard expedient as 
follows. Let &(f) be the time evolution operator for system (1.1). Then, in accordance 
with the Duhamel principle we have 

k=l 

Y(q,t , f i)  = Y S u ( q , f , h )  + dr&t - r)u,(q, z,E). (2.33) 
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Hence, in view of the unitary nature of the operator Ijh(t), we obtain on the time interval 
[O, TI 

IIY - Yevll~2 < A-’ if I l h  - r)IIIIvdq. r,fi)llLzdr < T D  max Ilu,(q, r,fi)llL2 O<r<T 

= o(ii39. 

2.3. The quasi-energy spectral problem 

To obtain a quasi-energy spectrum that corresponds, in the limit A -+ 0, to a stable motion 
of a classical system along a closed trajectory r,, we isolate the functions from the family 
(2.31) that satisfy modulo O(fi3/’) the quasi-periodicity condition 

wsu(q,t + T,R) = e-i”’EuT\lr,u(q,t, A) + o ~ i ~ 9 .  (2.34) 

The quasi-energy E, will be found in the form of the expansion in A: 

(2.35) 

Substituting equations (2.24) and (2.35) into equation (2.34) and equating summands with 
the same power of A’/’, we obtain the chain of equalities 

(2.36) 
(2.37) 
(2.38) 

where 0” = h - ’ ~ $ ~ )  +E;”. From equation (2.36), in’view of the explicit form ‘(2.12) of the 
functions [U, r )  and relationships (2.3), it follows that 

where U = (U’. . . . , U,,) is a set of non-negative integers defined in equation (2.12). The 
conditions (2.37) and (2.38) in turn allow us to find the constants C,,,, U # U’, and the 
quasi-energy additive E:’) (see appendix A). 

Finally, we must show that with properly chosen constants C&) = (l+C:=l fi‘/’C;), 
the functions (2.31) form an orthonormal (~nodO@~’~))  set of states. To do this we use the 
identitiest 

(U1i;’lU’) - (Ul$lU’) = 0 (2.40) 

that follow from the definition (2.30) of the operators 6. Then it can readily be seen that 

(2.41) 

Further, we put 

(2.42) 

1” To simplify designations. here we will ignore the time dependence of the functions IY, t) and the operators 

1 1 
--(v’lj3H(t)lv’) = A,,(t) 3 !A 3!h 

-(u’ls^’H(t)lW) = &,(t). 

W). 
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Then for the operators in the square brackets in equation (2.41) we find 

(2.43) 

In consideration of equation (2.43), expression (2.41) takes the form 

(Ysv I Y ~ I T F v ) = 1 + 2 J j l R e ~ , + ~ R e C , 2 + h  
m r 

I&v,12+/ 0 dzl/'drzA(e1,ez) 0 
lv'l=O 

where A(r1.r~) = ~ ~ l = o A u ~ ( e l ) & ~ ( e ~ ) .  
equation (2.44) is identically zero. Hence, for 

The sum of the last three summands in 

(2.45) 

the right-hand side of equation (2.44) is equal modulo O(h3'7 to unity. The property of 
orthogonality (modO(h3/*)) of functions (2.31) for U f U' is proved in a similar way. 

From the above results it follows that the quasi-energy Tcss (2.12), in the important 
particular case of quantum systems with a periodic squarelaw operator, form a complete 
orthonormal set of exact solutions, and the quasi-energies corresponding to these states are 
E ,  =Ab,, where pV are given by equation (2.39). Exact results related to the construction 
of quasi-energy states for square-law systems were also obtained by Malkin and Man'ko 
[SI. Moroever, it may be said that in [8,30,31] the quasi-energy spectral series for these 
systems is constructed in the region of instability motions. The mathematical procedure 
developed in [8] can turn out to be useful for generalization of the results of this section in 
the case of unstable isolated periodic orbits 1321. 

Finally, the works [33,34] should be noted; they are devoted to the quasi-classical 
quantization of T-periodic systems. Here, as distinct from the standard approach, the time 
t(mod T) plays the part of an additional angular variable, and the motion of a classical 
system is considered in an extended phase space [q, r, p ,  pr). In this consideration, the 
quasi-energy spectral series are generated by the quantization conditions of these motions 
in accordance ,with the well known Einstein-Brillouin-Ken-Keller procedure (with Maslov's 
topological characteristics taken into account). 

3. The Aharonov-Anandan phase 

Now we are going to consider the calculation of the Aharonov-Anandan phase 
corresponding to the quasi-energy states given by equations (2.31) and (2.32). To do this, 
we use formula (1.11) and neglect the O(h'/') order summands: 
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1 1 

Here, the vectors P(”)( t )  and q(.)(t) a e  defined by the formulae 

and specify small (O(h) order, h + 0) fluctuations of a qu&tum particle in the ‘Ifev around 
a classical phase trajectory rr = ( p ( t ) ,  q(t)). Using equations (2.21)+.23) we can then 
easily calculate the correlation matrix that characterizes the quantum fluctuations of the 
dynamic variables $ = -iha,, i = q, relative to their average values ($), (@) in the state 
defined by the leading term ]U, t }  of the asymptotic given by equation (2.12): 

(3.3) 

Here, D(u)  = diagQu1 + 1 , .  . . , 2un + 11, CAB = $([A, El+) - (A}(& = ; ( [Ai .  A&+), 
where A i  = + k i .  In deriving.equations (3.3) 
we used the equalities (u[$lu) = p ( t ) ,  ( u l ~ l u )  = q(t). With equations (3.3), it can readily 
be shown that 

( u ( j z H ( t ) l u )  = SpRe(C(t)D(u)B+(t) - E(t)D(u)C+(t))  

- (A), A b  = k - (g), [A, 2]+ = 

h 

(3.4) 

Note that the quantity under the summation sign on the right-hand side of equation (3.4) in 
view of equation (2.4), is real; hence, the Re sign can be omitted. 

. Then, 

substituting the explicit expression for ,9”, equation (2.39), into equation (3.1). and using 
equation (3.4), we find 

r 1 
Let us introduce vectors u&) = ($( t ) ,  4(t))T and xcv)(t) = P(”)( t ) ,  q(,)(t) 

( l  

If instead we now introduce the vectors, equation (2.3), T-periodic vector-functions 

ck(t) = e-i’krafi(t) i i k ( t  + T) =ti&) (3.6) 

equation (3.5) will take the form 
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Using the equations of motion for the quantum-mechanical average of the operators j 
and 3 in the state YZu: 

we may obtain an equation for the vector x(&) (see 124,351). To do this, we expand the 
left- and right-hand sides of equation (3.8) in terms of powers of RIP up to quantities of 
the order Op3’’). After simple algebraic manipulations we find 

d ZX(”) = H”&)X(”) + ~tF(”)(t) (3.9) 

where 

and 

(3.10) 

Here, 0, denotes an operator of the form 

fin, = (vq, uqq(t)vq) +2(V,.up,(t)vq) + (vq. uqq(t)vq) (3.11) 

where the matrices qq(t), . . . are defined by equations (3.3). With equations (3.3), the 
vectors &)(t) can be presented in the form 

Note that the symplectic vector product in the right-hand side of equation (3.12) is a real 

Equation (3.9) is a non-uniform linear Hamiltonian system with T-periodic coefficients. 
quantity. 

Its genera1 solution has the form 

The integration constants 
time-periodic: 

are found from the condition that the function ~ ( ” ) ( t )  is 

(3.14) ~ ( v ) ( t  + T) = ~ ( v ) ( t ) .  

Let 

(3.15) 

(3.16) 

(3.17) 
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Using equation (3.13). we obtain the expression for the Aharonov-Anandan phase (3.7) as 

where 

(3.19) 

The Aharonov-Anandan phase yEu corresponding to the quasi-energy TCSS 
equation (2.31), is thus completely determined by two geometric objects: the closed phase 
trajectory r, of the Hamiltonian system (2.1), stable in a linear approximation, and the 
complex germ r n ( r L )  formed from n linearly independent Floquet solutions to the system 
in variations, equations (2.2). 

4. The Aharonov-Anandan phase yEv in the adiabatic approximation 

Suppose that the~evolution of a classical system is defined by a Hamiltonian H ( p ,  q,  R( t ) )  
depending on time through a set of slowly varying T-periodic functions R(t) = 
(RI(&. .~. , R N ( ~ ) ) .  For this case, let us obtain an adiabatic approximation for ye,. To 
do this, as follows from equation (3.3, it is necessary to build up adiabatic solutions to 
equations (2.1), (2.2), and (3.9). 

To begin with we construct the adiabatic solution X ( t )  = ( p ( t ) , q ( t ) ) =  to the 
Hamiltonian system (2.1) that would satisfy the condition 

X ( t  + T) = X ( t ) .  (4.1) 
To find this solution we use the familiar method as follows. Let us put t = sT, where 
s plays the part of  slow dimensionless time. The solution will be found in the form of a 
formalt asymptotic series in terms of the adiabaticity parameterf 1/T 

0 I 1  
X(t) = X ($1 + 7 X (s) +O(l/T2). (4.2) 

Substitution of equation (4.2) into equation (2.1) results in therelationsbip 

where 

.. 
(2.13) (see e.g. 136,371). 
t The problem of verity of two-scale asymptotics has not been widely investigated in the mathematical literature. 
h i s  question is difficult as there are Go l k t s  involved T + m i d  A +-O. It can be shown, as T-' - h6, 
6 > 1, that the expansion into series of T-' -, 0 will not impair asymptotics by E 4 0 because quasi-energy 
asymptotics are uniform in t. 
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and the prime denotes a derivative with respect to s. Then, to the zero order with respect 
to the adiabatic parameter 1 / T we have 

A Yu Trifonov and A A Yevseyevich 

0 0 0  
and, hence, the vector X (s) = (P (s), 4 (s))' specifies the rest-point for the function 
H ( p ,  q, &s)) at every fixed value of s. Thus, we have 

0 0 
P (s )  = Po(&)) = POW))  4 (s) = Qo(&s)) = Qo(R(t)). (4.6) 

Obviously, to the zero approximation, the periodicity condition (4.1) is fulfilled. 

of equations 
To the first approximation, according to equation (4.3), we obtain the algebraic system 

1 0  
H,(3) x = x I .  (4.7) 

If the assumption is made that the rest-point given by equations (4.6) is stable (for every 
s) in the linear approximation, then there exists a set of linearly independent eigenvectors 

Hva(s)fk = i h  (Rw) f~ ~mnn = o (4.8) 

fk(S) = a k ( i ( s ) ) ,  k = G, O f  the m&X Hva(S) :  

0 

such that 

According to Maslov's terminology [21], this set of vectors specifies the simplest complex 
germ on a zero-dimensional Lagrangian manifold. The solution of the system of 
equations (4.7) with equation (4.1) has the form 

Thus, for the case where formulae (4.6) and (4.10) hold, the function (4.2) is the sought-for 
adiabatic solution to the Hamiltonian system (2.1). 

Let us now construct adiabatic solutions to the system in variations (2.2) that would 
satisfy the conditions (2.3) and (2.4): Expanding the matrix H&) in the neighbourhood 
of the stationary point specified by equations (4.6) we have 

H"&) = H d S )  + 'i: V&aAs), x (s) f 0(l/T2) (4.11) 

where VHw(s) is given by equation (3.19). We look for the solution as an expansion in 
terms of the eigenvectors fi(s), fl(s): 

7 ' i  
* 
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with coefficients 
0 1 1  

0 
&(S, 8) = Air@, 8)  4- r Aik(S, 8) f o(l/T2) 

iIk(S, 8 )  = Alx(S, e) f $ &(S, e) +O(l/Tz). 
1 (4.13) 

Here, 8 = (T@1 (s), . . . , T@"(s)) is a set of 'rapid' variables where the real functions 
k = G, are unknowns independent of T. Obviously, the time derivative in this case is 
given by 8, = +as + @'@)as. Substituting equations (4.12) and (4.13) into equation (2.2) 
and equating the summands with the same power of 1/T, we obtain, to the zero order, 

Integration of equations (4.14) gives 

(4.14) 

(4. IS) 
j = I  j=l  

0 0 
where ~ ~ ~ ~ ( s ) ,  Alkj(s) are the integration constants. The additional requirement that the 
functions (4.15) be 2rr-periodic with respect to all rapid variables e,, j = 1, n makes it 
possible to find the functions 

S O  
@j(s) ai(i(s))* (4.16) 

- 

and sets the following limitation for the choice of the integration constants: 
0 0 0 0 - - 

AIK~(s) = Ci&')&j Aikj = ci!&)&j. (4.17) 
From the quasi-periodicity condition (2.3) for the solutions (4.12) and from equations (2.4), 
it, in turn, follows that 

0 
-N,(s) C[k(S) 0. (4.18) 

0 
Clk(3) = &e 

As a result, the zero approximation to the functions ak(t) is given by 
0 
ak(t) = jk(s)ei(~"-~"(s)) e, = T 1' Ak(R(s))ds (4.19) 

Then, to a first-order adiabatic approximation, we obtain the set of equations for the 
where the real functions Nk(s) remain unknown. 

1 t  
functions Aik, Alk: 

where 

(4.21) 
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As in the above case, we see the solutions to equations (4.20) complemented with the 
condition for the 2n-periodicity with respect to the variables e,, j = 1, n, and relationships 
(2.3) and (2.4). Simple manipulation results in 
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- 

(4.22) 

(4.24) 

1 
The functions C&) entering onto equation (4.23) are determined from subsequent 

approximations; moreover, they satisfy the condition Ck(s + 1) = C&). It should be 
stressed that relationships (4.23) and (4.24) have been obtained with the supposition that 

there are no resonance correlations between the frequencies, i.e. cJ=, mj Qj ( f i (s ) )  # 0, 
mj E %. 

Substitution of equations (4.23) and (4.24) into equation (4.12). and consideration of 
equation (4.15) results in 

I 1 

0 

(4.25) 

Comparing equation (4.25) with the quasi-periodicity condition (2.3) we obtain 

The adiabatic solution to equation (3.9) is built up using the same scheme. As a 
result, the sought-for (mod 2"-') solution that satisfies the T-periodicity condition (3.14) is 
presented as 

where FciV)(s) is the zero approximation for the vector function 3(&) given by 
equation (3.12). 

Substituting equations (4.19), (4.26) and (4.27) into equation (3.3, we obtain 
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and 
l aak(R)  1 1 ET- +I) 1: ( ) = - - - -  R 

aRi I-1 n n ( R )  

Here, C is the closed loop drawn by the end of the vector R(r), t E [O, TI in the space of 
parameters (RI,  . . . , RN) .  

As follows from the results of [19]t, the expression for pu(C) given by formulae (4.29) 
and (4.30) coincides with the quasi-classical expression for the Eemy phase associated with 
the adiabatic motion of a zerodimensional Lagrangian manifold with a complex germ. 

5. Examples 

As the first example illustrating the general scheme described in section 3, let us consider 
the one-dimensional sinusoidally forced harmonic oscillator [31,38,39]. In this case, the 
Hamiltonian of the system has the form 

(5.~1) 

where o, 00, and F are constants. Thus, we have &(t + T )  = A(t) with T = 2n/wo. The 
Hamiltonian (5.1) conforms with the classical Hamiltonian 

&(t) = ip 1.2 +?o I 2 - 2  q -qFsinoot 

H ( t )  = z p  1 2  + p 1 2 2  4 -qFsinwot. (5.2) 
The classical set of equations (2.1) for this Hamiltonian admits a T-periodic solution 
describing an ellipse: 

In view of the fact that the matrix H,, = constant, the problem of constructing the Floquet 
solutions (2.3). normalized by the conditions (2.4). is reduced to solving the spectral problem 
for the matrix HYX.  Eventually, we find 

But, according to equation (3.6) we have 

E( t )  = fo = constant. (5.5) 
From equations (2.39) and (3.18) it follows that, in this case, the phase yEu is independent 
of v and is given by 

t [I91 contains lhe following errors: 
(1) n e r e  are bound to be -U+ instead of +v+ in (6.91, (6.12) and (6.13). 
(2) Matrix was omitted in (5.27) which must have the form 
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Thus, it has a simple quasi-classical sense: the area covered by the radius vector of a point 
moving over the phase plane. 

Now let us consider the motion of a relativistic spidcss particle describing by the 
Klein-Gordon equation 

A Yu Trifonov and A A Yevseyevich 

e [ii - czp2 - mgc4]Y = 0 = R& - eAo k = -RV - - A  (5.7) 
C 

in the Redmond field 

coswe - - x ,  0 ) (5.8) 2 A o = O  A =  

where = t - z / c ,  g defines right (g = 1) and left (g = -1) circular polarizations and 
EO is an amplitude of the electric-field s-ngth. The problem of (1.3) and (1.8) in the field 
(5.8) can be reduced, for the equation (5.7), to the problem considered before in the special 
coordinate system. 

Let us transform to coordinates of the zero plane [40] in equation (5.7): 

U0 = f - z / c  U, = x U 2  = y U) = t + z / c .  (5.9) 
Equations (5.7) and (5.8) take the following form in coordinates of the zero plane (5.9): 

and the scalar product is 

(VI I ~ 2 )  = J d 3 m ; ~ 3 q 2  + ( j 3 ~ l ) * ~ z ~ .  

A solution of equation (5.10) will be found in the form 

Thus, the function 5 satisfies the Schrodinger equation 

( -%auo +&Lo)} Ijl = 0 

where 
CZ 

4h 
A(u0) = -[+; + 4 + micz]. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

A scalar product for the functions 5 has the form 

($1 I @ 2 ) = 2 1 / d 2 n ~ $ z .  (5.15) 

Hence, for the function $ one obtains the Schrodinger equation with the periodic 
Hamiltonian (5.14). where uo plays the part of time. 

The Hamiltonian system corresponding to the problem of (5.13) and (1.2) has the form 

CZ iwo 
2h 

81. = --uz?L 2 
CL = -PL 

ecH exp(-iguzwuo) AI = - eH e 
2c C w 

FL = p i  - i-crzuL - -AL 

(5.16) 
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Excluding p~ from system (5.16) one can write 

After integrating this equation one has 
ec 
21 

+ iwouzmi = --AI + ai 011 = (::) = constant. (5.17) 

In the resonanceIess conditions, e.g. WO # U ,  

I I ec 
UL = - --U@L + -- S A L .  

WO WO - gw 21 
From (5.16) and (5.19) one finds 

The system in variations responding to the Hamiltonian (5.14) can be written as 

(5.19) 

(5.20) 

(5.21) 

Thus, 
Z + i q &  = 0. (5.22) 

Denote eigenvectors of the matrix U2 as f t :  

U2fc = Sf{ (f<, f?) = JtL' 3.5' =~fl (5.23) 

so, 

1 

(5.24) 

where 

From the normalized condition (a&, a;) =~ 2i6k.Z one finds the constants N k  and < and, 
finally, 

and for the quasi-energy spectrum one finds 

(5.26) 
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Now let us calculate the integrals: 
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Thus, for the quasi-energy spectrum and for the Aharonov-Anandan phase one obtains 

(5.28) 

Thus, in the field (5.8) the semiclassical limit of the Ahmonov-Anandan phase is, essentially, 
the symplectic area averaged over the motion of p i ,  UL (see also [41J). 
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Appendix A. 

Firstly we use equation (2.37) to find the constants C,,,. To do this, it is convenient to 
rewrite equation (2.28) in the form 

1 

where 

In view of the fact that the set of functions Iv ,  t )  is orthogonal and complete, we conclude, 
based on equation (2.37), that 

1 
It can readily be seen that with a properly chosen constant Cvv’3 relationship (A.3) is fulfilled 
for any value o f f .  To do this, it is sufficient to differentiate equation (A.3) with respect 
to t and be convinced that this will give an identity. Then, setting t = 0, we obtain from 
equation (A.3), 

Note that for v = U’, equation (A.3) becomes an identity since, in this case, the coefficients 
,BLt)(t) are zero in view of equations (2.21) and (2.23). 
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can be found in a similar way from equation (2.38). Let us 
2 

The constants C,,, and 
Put 

Then, function (2.29) can be represented in the form 

Substituting equation (A.6) into equation (2.35), we obtain the condition 

e-i(fld)‘(auv+ + T )  + f i$(r  + T )  + 2 

2 
= e-“p*)T{cr,d(t) + p:!(t) + c V d  - LE$”TS,,,J. (-4.7) 

By analogy with equation (A.3), from equation (A.7) it follows that 

I 
E:’’ = -{%v(T) +p$z,’(T)}. T 
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